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Abstract: Cyclic loading in marine clay may lead to gradual loss of its shear strength and it is a major cause for 

increasing pore water pressure. This paper presents the strain-controlled cyclic direct simple shear test results to 

describe the cyclic undrained shear strength of Malaysia marine clay under different overconsolidation ratios 

(OCR) and strain amplitudes ranging from ±1% to ±5%. It is reported herein that the degradation of shear 

strength and pore water pressure increment are significant when cyclic strain amplitude applied on clay specimen 

increases. On the other hand, overconsolidated clay specimens tend to develop negative pore pressure at low strain 

level (±1%) as soon as cyclic tests began. However, normally consolidated clay specimens generate positive pore 

pressure at all strain amplitudes applied in the present study. 
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I.   INTRODUCTION 

Offshore structures with marine clay foundation may be subjected to undrained cyclic loads due to earthquakes, ocean 

waves and pile driving [1]. Therefore, soft marine clay presents critical problems for the design of stable offshore 

structures against the cyclic loading [2]. Cyclic strain-controlled tests have been extensively investigated to study the 

effects of OCR by many researchers [3, 4, 5, 6]. 

The undrained cyclic loading may lead to failure of clay due to the development of pore pressure and cyclic induced shear 

strain [7, 8, 9, 10]. Clay soil exhibits pronounced non-linear and hysteretic behaviour under cyclic loading [11]. Kagawa 

[2] reported that the hysteresis loop produced in marine clay under cyclic loading is small at small strain amplitudes. 

However, at large strain amplitude, both the area of hysteresis loop and excess pore water pressure increase. Thus, the 

strength and stiffness of clay decrease. Mortezaie and Vucetic [5] also found that the cyclic degradation and pore water 

pressure changes corresponding to number of cycles are larger if the cyclic strain amplitudes are larger. The result 

revealed that the cyclic strain amplitude and number of cycles, N, are the determining factors which influence the 

degradation. 

In the present study, the cyclic behaviour of Malaysia marine clay was tested in the cyclic strain-controlled simple shear 

tests. The objective of this investigation is to examine the influences of OCR and the strain amplitudes on Malaysia 

marine clay which govern the shear strength of marine clay subjected to undrained cyclic loading. Studies conducted on 

cyclic loading of Malaysia marine clay are scarce despite the vast exploration of oil and gas industry in Malaysia. Hence, 

the results of the present work can give valuable insights for the offshore geotechnical constructions. 

II.   TESTING PROGRAMME 

The results presented herein have been derived from constant volume simple shear (CDSS) device conducted in the 

laboratory. The tests were performed on reconstituted marine clay specimens which were recovered from offshore 

Terengganu, Malaysia. The index properties of Terengganu offshore clay (TOC) are listed in Table I. A detailed 

geotechnical properties of clay specimens are further discussed by Thian and Lee [12]. 
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TABLE.I: GEOTECHNICAL PROPERTIES OF TOC SPECIMEN 

Liquid limit 54% 

Plastic limit 27% 

Plasticity index 27% 

Clay fraction (d < 0.002 mm) 43% 

Specific gravity 2.58 

The saturated TOC specimen was prepared with moisture content of 40 % and initial dry density of about 1.25 g/cm
3
. 

CDSS tests were conducted on cylindrical specimen of 70 mm diameter and 25 mm height. The specimen was 

consolidated under normal load within a stack of thin rings that provided lateral confinement, but allowed the specimen to 

be deformed vertically. During consolidation, stacked rings were clamped to prevent lateral strain. All the TOC specimens 

were subjected to Ko consolidation. Overconsolidated TOC specimens were consolidated at 400 kPa vertical stress before 

being unloaded to achieve the desired overconsolidation ratio prior to shearing. The specimens were tested at various 

OCR (OCR = 1, 4 and 10) with standard loading rate of 1.2 mm/min on all normally and overconsolidated specimens.  

A modified computer-controlled CDSS device incorporated with a data logging system was used. CDSS tests on soils has 

been studied extensively for half a century and is described in the standard ASTM D 6528 [13]. The specimen height was 

continuously maintained during shearing test to ensure constant volume. Rather than measuring pore pressures, which 

would require complete saturation of specimen, the pore pressure response was inferred from the change in vertical stress. 

The change in soil sample vertical stress is assumed to be equal to the changes in pore pressure that would have taken 

place in a truly undrained test condition [14, 15, 16, 17]. In such tests, the vertical stresses applied via top specimen cap, 

and the horizontal stresses developed by the confinement of rubber membrane with stacked rings, are always effective 

stresses. Figure I illustrates the test specimen assembly for CDSS used in the present study. 

 

FIGURE.I: PLAN VIEW OF TEST SPECIMEN ASSEMBLY OF CDSS 

In this study, undrained symmetrical (two-way) strain-controlled quasi-static tests were conducted on TOC specimens. 

Cyclic strain, γcy (single amplitude; γcy = 0.5∙[γmax – γmin]), ranging from ±1 to ±5% were kept constant during the test and 

cyclic stress, τcy, required to maintain the cyclic strain was measured. All cyclic tests were limited to maximum 500 cycles 

due to the limitation of the device. Details of the tests are given in Table II. 

TABLE.II: CDSS TESTS FOR STRAIN-CONTROLLED TESTS 

OCR Two-way strain-controlled tests; γcy 

(%) 

1 ±1, ±3, ±5 

4 ±1, ±3, ±5 

10 ±1, ±3, ±5 
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III.   RESULTS 

Figure II presents the typical stress-strain hysteresis loops and average cyclic pore pressure, ua, for normally consolidated 

TOC specimen subjected to strain-controlled tests at γcy = ±1%, 3% and 5%. Generally, the amplitudes of γcy are constant, 

while the amplitudes of τcy degrade with the accumulation of ua and N [5, 18]. The hysteresis loops for the first cycles gain 

high cyclic shear strength soon after the tests begin.  

When TOC specimen is subjected to γcy = ±1% and N > 25, the shape of the hysteresis loops almost coincide with the 

previous ones. The specimen has reached equilibrium at this state where minimal degradation of cyclic strength is found. 

However, the τcy reduces significantly with N as the amplitude of γcy increases [19] especially when TOC specimen is 

subjected to γcy = ±5%. The stress-strain hysteresis loops become more nonlinear and the hysteresis loops do not coincide 

with the previous ones. Instead, the hysteresis loops gradually tilt towards the horizontal axis and gradual softening of soil 

is noted. The area of the loops become fairly large with increasing γcy due to the larger damping at higher strain 

amplitudes [20]. The stress-strain loop clearly exhibits a reduction of the secant shear modulus with N [5].   

FIGURE.II: SHEAR-STRESS AND PORE PRESSURE RESPONSES UNDER STRAIN-CONTROLLED TEST WITH γcy = 

±1, 3 AND 5% AT OCR 1

 

Figures III and IV illustrate the stress-strain loops and ua development for overconsolidated TOC specimens at OCR = 4 

and 10, respectively. When overconsolidated TOC specimens undergo strain-controlled tests at γcy = ±1, 3 and 5%, they 

show similar stress-strain loops as those of normally consolidated specimens. The deterioration of τcy becomes more 

apparent as γcy increases. However, the ua development of overconsolidated TOC specimens differs from that of normally 

consolidated specimens. Negative ua is generated due to dilatancy in overconsolidated TOC specimens especially if γcy is 

small and OCR is high. Similar observation is reported by Soralump and Prasomsri [6], Matasovic and Vucetic [21], Hsu 

and Vucetic [22], Javed [23] and Mortezaie [24]. In overconsolidated clay, negative ua develops at initial cyclic loading, 

despite the fact that degradation of soil stiffness and strength occurs simultaneously [21]. It is an interesting phenomenon 

in cyclic clay behaviour, because soil degradation occurs despite the evident increase in effective stress [25, 26]. In 

subsequent cycles, due to increase in number of cycles, the previous greater effective consolidation pressure diminishes 

and TOC specimen behaves as if it is normally consolidated [23, 27]. Hence, positive ua is generated. 
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FIGURE.III: SHEAR-STRESS AND PORE PRESSURE RESPONSES UNDER STRAIN-CONTROLLED TEST WITH γcy = 

±1.3, 3 AND 5% AT OCR 4

 

FIGURE.IV: SHEAR-STRESS AND PORE PRESSURE RESPONSES UNDER STRAIN-CONTROLLED TEST WITH γcy = 

±1, 3 AND 5% AT OCR 10

 

IV.   CONCLUSIONS 

A series of two-way strain-controlled undrained cyclic simple shear tests was carried out to investigate the effect of OCR 

and strain amplitudes on reconstituted TOC specimens. The amplitudes of τcy degrade with the accumulation of pore 

pressure in clay specimens as the number of cycles increases. The degradation of τcy and pore pressure accumulation 
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become more significant as strain amplitude increases in both normally and overconsolidated specimens. However, 

negative pore pressure is developed in overconsolidated specimens particularly when strain amplitude is small and OCR 

is high which can be attributed to dilatant tendency of clay. The hysteresis loops gradually tilt towards the horizontal axis 

and gradual softening of soil is noted. 
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